Title of dissertation : OPTIMAL APPROXIMATION SPACES FOR SOLVING PROBLEMS WITH ROUGH COEFFICIENTS

نویسندگان

  • John E. Osborn
  • Helen Li
چکیده

Title of dissertation: OPTIMAL APPROXIMATION SPACES FOR SOLVING PROBLEMS WITH ROUGH COEFFICIENTS Qiaoluan Li, Doctor of Philosophy, 2009 Dissertation directed by: Professor John E. Osborn Department of Mathematics The finite element method has been widely used to solve partial differential equations by both engineers and mathematicians for the last several decades. This is due to its well-known effectiveness when applied to a wide variety of problems. However, it has some practical drawbacks. One of them is the need for meshing. Another is that it uses polynomials as the approximation basis functions. Commonly, polynomials are also used by other numerical methods for partial differential equations, such as the finite difference method and the spectral method. Nevertheless, polynomial approximations are not always effective, especially for problems with rough coefficients. In the dissertation, a suitable approximation space for the solution of elliptic problems with rough coefficients has been found, which is named as generalized L-spline space. Theoretically, I have developed generalized L-spline approximation spaces, where L is an operator of order m with rough coefficients, have proved the interpolation error estimate, and have also proved that the generalized L-spline space is an optimal approximation space for the problem L∗Lu = f with certain operator L, by using n-widths as the criteria. Numerically, two problems have been tested and the relevant error estimate results are consistent with the shown theoretical results. Meshless methods are newly developed numerical methods for solving partial differential equations. These methods partially eliminate the need of meshing. Meshless methods are considered to have great potential. However, the need for effective quadrature schemes is a major issue concerning meshless methods. In our recently published paper, we consider the approximation of the Neumann problem by meshless methods, and show that the approximation is inaccurate if nothing special (beyond accuracy) is assumed about the numerical integration. We then identify a condition referred to as the zero row sum condition. This, together with accuracy, ensure the quadrature error is small. The row sum condition can be achieved by changing the diagonal elements of the stiffness matrix. Under row sum condition we derive an energy norm error estimate for the numerical solution with quadrature. In the dissertation, meshless methods are discussed and quadrature issue is explained. Two numerical experiments are presented in details. Both theoretical and numerical results indicate that the error has two components; one due to the meshless methods approximation and the other due to quadrature. OPTIMAL APPROXIMATION SPACES FOR SOLVING PROBLEMS WITH ROUGH COEFFICIENTS by Qiaoluan Helen Li Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2009 Advisory Committee: Professor John E. Osborn, Chair/Advisor Professor Konstantina Trivisa Professor Peter Wolfe Professor Tobias von Petersdorff Professor Howard Elman c © Copyright by Qiaoluan Helen Li 2009

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Successive Approximation Method for Solving a Class of Optimal Control Problems

This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...

متن کامل

Study on multi-objective nonlinear programming in optimization of the rough interval constraints

This paper deals with multi- objective nonlinear programming problem having rough intervals in the constraints. The problem is approached by taking maximum value range and minimum value range inequalities as constraints conditions, reduces it into two classical multi-objective nonlinear programming problems, called lower and upper approximation problems.  All of the lower and upper approximatio...

متن کامل

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficients

This paper addresses a multi-scale finite element method for second order linear elliptic equations with rough coefficients, which is based on the compactness of the solution operator, and does not depend on any scaleseparation or periodicity assumption of the coefficient. We consider a special type of basis functions, the multi-scale basis, which are harmonic on each element and show that they...

متن کامل

S-APPROXIMATION SPACES: A FUZZY APPROACH

In this paper, we study the concept of S-approximation spaces in fuzzy set theory and investigate its properties. Along introducing three pairs of lower and upper approximation operators for fuzzy S-approximation spaces, their properties under different assumptions, e.g. monotonicity and weak complement compatibility are studied. By employing two thresholds for minimum acceptance accuracy and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009